
Lecture 12: Undecidable Languages

Ryan Bernstein

1 Introductory Remarks

• Assignment 3 is available online, and is due a week from today (05/19)

1.1 Recapitulation

On Tuesday, we built a lot of Turing machines. These Turing machines decided languages based on
encodings of other machines or objects. They included languages like:

• ADFA = {〈D,w〉 | D is a DFA that accepts w}

• EDFA = {〈D〉 | D is a DFA and L(D) = ∅}

• AllDFA = {〈D〉 | D is a DFA and L(D) = Σ∗}

• ACFG = {〈G,w〉 | G is a context-free grammar capable of generating w}

The key point here was that, since Turing machines are algorithms, we could use any algorithm that
we’ve seen before as a step when constructing a machine M . This includes things like conversion to
Chomsky normal form or between machines equivalent in power, but it also includes the Turing machines
that we’re constructing themselves. Once we’ve constructed as a machine, we can use that machine as a
subroutine to solve larger problems, just as we can with programs, functions, and libraries that we write
while programming.

By constructing Turing machines that decided all of these languages, we showed that they were Turing-
decidable. Today, we’ll be looking at languages that are not Turing-decidable. To do this, we’ll need to
start by showing that such languages actually exist.

2 Countable and Uncountable Infinity

First, a return to CS 250. In CS 250, we discussed the idea of infinite sets. We broke infinite sets into
two categories: countably infinite and uncountably infinite. Countably infinite sets are those that can be
put into a one-to-one mapping with the natural numbers or some subset thereof. Obviously, the natural
numbers themselves fall into this category. We can also see that Z is countably infinite by generating a
function f : Z→ N :

f(x) =

{
2x− 1 x > 0

−2x x ≤ 0

1



This generates a mapping like the following:

x −3 −2 −1 0 1 2 3
f(x) 6 4 2 0 1 3 5

What’s the point of creating such a mapping? Countably infinite languages are so named because we can
enumerate all of their members by counting. Once we’ve mapped the set to the natural numbers, we can
reach every member of the set simply by starting at zero and counting up. While this enumeration may
never finish, we will eventually hit any arbitrary element.

Uncountably infinite sets, then, are sets that cannot be mapped to the natural numbers. The canonical
example of this is the set of all infinite-length binary strings. We call this set uncountably infinite because
of an argument called Cantor’s Diagonalization. This assumes that we have some enumeration of all
infinite-length binary strings, like so:

s1 = 0 1 0 1 0 0 ...
s2 = 1 1 0 1 0 0 ...
s3 = 0 1 1 0 1 1 ...

...
sn = 1 1 1 0 1 0 ...

...

We can generate another binary string sd by inverting the first character of s1, the second character of s2,
and so on.

s1 = 0 1 0 1 0 0 ...
s2 = 1 1 0 1 0 0 ...
s3 = 0 1 1 0 1 1 ...

...
sn = 1 1 1 0 1 0 ...

...

sd = 100...

Because sd differs from every string in this enumeration at the point of diagonalization, we know that sd
will not have already been a member of this enumeration at any point. In other words, our enumeration
that lists all possible infinite-length binary strings cannot have generated sd, even though it is itself an
infinite-length binary string.

The important part of this distinction, for our purposes, is that even though countable and uncountable
sets can both have infinite cardinalities, an uncountably infinite set has many, many more members than
does a countably infinite one.

3 Turing Machines and Languages

Now that we’ve established the difference between countable and uncountable infinity, we can make some
statements about Turing machines and languages.

Theorem The set of all Turing machines is countably infinite.

2



We say that a set is countably infinite if we can establish a one-to-one mapping between it and some subset
of the natural numbers. We learned in CS 250 that we can encode any object that can be represented
with finite precision using only the alphabet {0, 1}. We saw examples of the things that this allowed on
Tuesday.

If we let 〈G〉 be the encoding of a Turing machine using {0, 1}, we can also interpret 〈G〉 as a (probably
very large) binary representation of a natural number n. By enumerating the natural numbers, we can
therefore enumerate the binary representation of every possible Turing machine.

The set of all Turing machines is therefore countably infinite.

Theorem Σ∗ is countably infinite.

We can use similar logic to show that Σ∗ is countably infinite. We can enumerate all of the strings in Σ∗ by
generating them in what’s known as shortlex order. Shortlex order orders strings first by length and then
by standard lexicographical (i.e. dictionary) order. Mapping the strings in {0, 1}∗ to the natural numbers
might then look something like this:

Index 0 1 2 3 4 5 6 . . .

String ε 0 1 00 01 11 000 . . .

Theorem The set of all languages is uncountably infinite.

We can now show that the set of all languages is uncountable. We define a language L as a sub-
set of Σ∗, which means that every element of Σ∗ is either present or absent in L. We can therefore
draw L as a bit vector parallel to the enumeration of Σ∗ that we just created. Each bit in this vec-
tor represents the presence or absence in L of the corresponding element of Σ∗. As an example, let
A = {w ∈ {0, 1}∗ | w contains an even number of zeros}. We can represent A as a bit vector parallel to
Σ∗ like this:

Index 0 1 2 3 4 5 6 . . .

String ε 0 1 00 01 11 000 . . .
Present in A? 1 0 1 1 0 1 0 . . .

We can generalize this logic to say that any powerset of a countably infinite set is uncountable.

Conclusion There are many, many more languages than Turing machines.

Since the set of all languages is uncountably infinite and the set of all Turing machines is countable, there
are many more languages than there are Turing machines. This means that there must be some languages
for which no Turing machine exists. We can therefore conclude that there exist languages that are not
Turing-recognizable.

4 ATM

We’ve drawn our language hierarchy like this, with Turing-recognizable languages as a strict superset of
Turing-decidable ones:

3



context-free

decidable

recognizable

As a reminder, our distinction was this:

A Turing machine M decides a language L if and only if:

1. ∀s ∈ L, M Accepts s

2. ∀s /∈ L, M Rejects s

A Turing machine M recognizes a language L if and only if:

1. ∀s ∈ L, M Accepts s

We haven’t actually shown that there’s a meaningful distinction here. To prove that the set of all Turing-
recognizable languages is a proper superset of the set of all Turing-decidable languages, we’ll examine the
language ATM.

Let ATM = {〈M,w〉 | M is a Turing machine and M Accepts w}.

4.1 ATM is Turing-Recognizable

Building a recognizer for ATM is pretty simple. We can use exactly the same strategy that we used for
languages like ADFA and ANFA.

M = “On input 〈M,w〉:

1. Simulate M on w.

• If M accepts w, Accept

• If M rejects w, Reject”

This works just fine for DFAs, NFAs, or PDAs. But since Turing machines have the option of looping
forever rather than entering qaccept or qreject, we have a third case to take into account.

Note that we did not use the word “otherwise” or “else” (e.g. “If M accepts w, Accept. Otherwise,
Reject”) to determine when to Reject. If we’re building a decider for a language, it’s fine to use these
words, because we know that every step should terminate. Since the simulation of M on w may never
terminate, though, we cannot use this same strategy when constructing a recognizer.

4



4.2 ATM is Not Turing-Decidable

Showing that ATM is undecidable is a bit trickier. First, we’ll assume that ATM is decidable. Then there
is a machine, MATM

, that decides it.

We can now construct a machine D as follows:

D = “On input 〈M〉:

1. Simulate MATM
on 〈M, 〈M〉〉.

• If MATM
accepts 〈M, 〈M〉〉, Reject

• If MATM
rejects 〈M, 〈M〉〉, Accept”

D takes an encoding of a machine as input. It uses MATM
to determine whether or not that machine

accepts an encoding of itself. If so, D rejects the machine. If not, D accepts.

What happens if we run D with input 〈D〉?

• If D accepts 〈D〉, then D must Reject 〈D〉

• If D rejects 〈D〉, then D must Accept 〈D〉.

Clearly, this is paradoxical. Since the construction of D was enabled by our assumption that MATM

existed and this resulted in a contradiction, we can conclude that our assumption was incorrect, and ATM

is undecidable.

4.3 ATM’s Implications for Recognizability

We can now conclude that the set of recognizable (but not decidable) languages contains at least one
member. ATM is not only the first language in this class that we’ve seen, but also the most important.

Assume that ATM was decidable, but that some other undecidable language B was Turing-recognizable.
Then there would exist a machine MB that recognized (but did not decide) B.

We could clearly construct a decider for B by running MATM
on 〈MB, w〉. In other words, if ATM was

decidable, then every Turing-recognizable language would also be decidable.

5 Recognizability vs. Decidability

Theorem If L is Turing-recognizable and L is Turing-recognizable, then L is Turing-decidable.

If L and L were both Turing-recognizable, we could construct a decider for L like so:

Let ML be a machine that recognizes L and ML be a machine that recognizes L. We’ll create a nondeter-
ministic machine that decides L. M = “ On input w:

1. Simulate ML and ML in parallel.

• If ML accepts w, Accept

• If ML accepts w, Reject”

5



Since we know that either w ∈ L or w ∈ L and we have recognizers for both languages, we can create
a decider for L by determining which machine recognizes w. As a corollary, we can say that if L is
recognizable but not decidable, then L is not recognizable. Otherwise, the class of decidable languages
would equivalent to the class of recognizable languages, which we’ve just shown to be false.

This lets us conclude the following: Since ATM is recognizable, but not decidable, ATM must be undecid-
able. This will be important later, but for now, we can see that it validates the theorem that we proved using
diagonalization at the beginning of the lecture: there exist languages that are not Turing-recognizable, and
that therefore exist outside of all of the circles on our language hierarchy.

6 Reductions

We’ve now proven the existence of two undecidable languages (ATM and ATM) and one unrecognizable
language (ATM). The proof for both of these was a bit involved, and required us to generate a para-
dox.

The good news is that we need not do this for every undecidable or unrecognizable language; we have
a strategy that we can use to place languages in these categories. The bad news is that this process is
probably the single most difficult concept in this course.

We say that a problem A is reducible to another problem B if a solution to B can be used to solve A.

To get even more specific, we say that a language A is mapping reducible to a language B if there exists a
computable function f : Σ∗ → Σ∗ such that:

1. ∀s(s ∈ A→ F (s) ∈ B)

2. ∀s(s /∈ A→ F (s) /∈ B)

In other words, F is a function whose result is in B if and only if its input was in A:

A f(A)

B f(B)

C f(C)

There’s one element that we’ve glossed over, which is the definition of a computable function. We say that
f : Σ∗ → Σ∗ is a computable function if there exists a Turing machine M that, on input w, halts with
f(w) on its tape.

If A is mapping reducible to B, we write A ≤m B. To show that this is the case, we need only construct
a Turing machine F that:

• Given some w ∈ A outputs an s ∈ B

• Given some w /∈ A outputs an s /∈ B

6



6.1 Creating Mapping Reductions

Since ATM is our prototypical undecidable language, we’ll show that another language B is undecidable
by creating a mapping that shows that ATM ≤m B. This shows that if we could solve B, we could also
solve ATM.

All such mapping reductions work by implying the existence of a machine MATM
that decides ATM. As

such, all mapping reductions use the same proof by contradiction, written below:

Proof Assume that B is Turing-decidable. Then there exists a machine MB that decides it.

We can create construct a machine MATM
that decides ATM as follows:

MATM
= “On input 〈M,w〉:

1. Run MB on F (〈M,w〉).

• If MB accepts F (〈M,w〉), Accept

• Reject”

Since we’ve already shown that ATM is undecidable, we’ve reached a contradiction. Our assumption is
therefore false, and B is undecidable.

6.2 The Halting Problem

Many of you were in David Lu’s section of Computer Science 251, for which I was a TA. During my lectures
on program correctness, we discussed the Halting Problem: given an arbitrary input, does this program
halt, or loop infinitely? We called the Halting Problem a canonical example of an uncomputable problem.
We will prove that the Halting Problem is undecidable now, using a mapping reduction.

Proof Let HaltTM = {〈M,w〉 | M is a Turing machine and M halts on input w}. Show that HaltTM

is undecidable.

To do this, we’ll demonstrate that ATM ≤m HaltTM. Doing this is as simple as constructing a Turing
machine that, given an input 〈M,w〉 produces an output 〈M ′, x〉 such that M ′ halts on x if and only if M
accepts w.

F = “On input 〈M,w〉:

1. Construct a machine M ′ as follows: M ′ = “On input x:

(a) Simulate M on w.

• If M accepts w, Accept x

• If M rejects w, enter an infinite loop.”

2. Output 〈M ′, w〉.”

Note that F creates M ′ and outputs it without ever running it. That means that F will always halt, even
if the simulation step in M ′ does not.

What is L(M ′)? We have three cases to consider.

7



Case 1: M accepts w

If M accepts w, then M ′ accepts x, regardless of what x actually is. This means that L(M ′) = Σ∗.
Since M ′ accepts all inputs, M ′ halts on all inputs.

This means that when we output 〈M ′, w〉, we’ve output a machine and a word on which that machine
will halt. This in turn means that 〈M ′, w〉 ∈ HaltTM.

Case 2: M rejects w

If M rejects w, M ′ enters an infinite loop, regardless of the value of x. This means that M ′ loops on
all inputs. Outputting 〈M ′, w〉 is therefore outputting a machine and a word on which that machine
will not halt. In this case, 〈M ′, w〉 /∈ HaltTM.

Case 3: M loops on w

In this case, the simulation step of M ′ will never terminate, and M ′ will loop regardless of the value
of x. This means that M ′ does not halt on w, and 〈M ′, w〉 /∈ HaltTM.

This means that the only case in which we output a machine and a word on which that machine halts
will be Case 1, when M accepts w. As discussed before, this allows us to create a following decider for
ATM.

Assume that HaltTM is decidable. Then there is a Turing machine H that decides it.

MATM
= “On input 〈M,w〉:

1. Run H on F (〈M,w〉).

• If H accepts F (〈M,w〉), Accept

• Reject

Since we know that ATM is undecidable, we’ve reached a contradiction. We can therefore conclude that
our initial assumption was false, and that HaltTM is undecidable.

8


